
Real Time Algorithms for Sharp Wave Ripple Detection

Ankit Sethi1 and Caleb Kemere1,2

Abstract— Neural activity during sharp wave ripples (SWR),
short bursts of co-ordinated oscillatory activity in the CA1
region of the rodent hippocampus, is implicated in a variety
of memory functions from consolidation to recall. Detection of
these events in an algorithmic framework, has thus far relied
on simple thresholding techniques with heuristically derived
parameters. This study is an investigation into testing and
improving the current methods for detection of SWR events in
neural recordings. We propose and profile methods to reduce
latency in ripple detection. Proposed algorithms are tested on
simulated ripple data. The findings show that simple real-
time algorithms can improve upon existing power thresholding
methods and can detect ripple activity with latencies in the
range of 10-20 ms.

I. INTRODUCTION

When rodents are asleep or awake but not actively engaged
in exploration, large amplitude excursions occur in the local
field potential (LFP) recorded in the stratum radiatum of
area CA1 of the hippocampus [1]. These events, known as
sharp waves, are associated with fast oscillations in the range
of 150-250 Hz [2] [3]. These oscillations, known as Sharp
Wave Ripples or simply ripples, are at a higher frequency
than other LFP bands such as theta or gamma bands and last
for about 50-150 ms [4]. Numerous studies [4] [5] [6] have
established the existence of a relationship between SWRs and
memory processes. Specifically, the reactivation of patterns
of neural activity present during behavior - ”replay” - occurs
on a compressed timescale during SWRs, and the dynamics
of this replay changes during the process of learning. The
exact nature of the relationship between SWRs and memory
is not comprehensively understood, but it has been shown
[7] [8] [10] that the disruption of SWRs by electrical
stimulation of the hippocampus impairs the performance of
rats in memory tasks. This has been interpreted to imply
that disruption of replay prevents the consolidation of short
term memories for long terms storage as well as the recall
of memories which guide behavior. Studies like these which
aim to causally investigate the role of ripples require real
time low-latency detection of SWRs. The motivation of this
work is to identify optimal algorithms for SWR detection.

A variety of approaches have been used in previous studies
involving real-time ripple detection. In [7] [9], simple power
measurements were employed in a custom sliding time
window followed by a thresholding. One study [8] used an
analog version of the same technique. Most recently, in [10]
a heuristic envelope estimation is done on the signal followed
by a dynamically updated threshold. This study analyzes the

A. Sethi and C. Kemere ({as84,caleb.kemere}@rice.edu) are
with the 1Department of Electrical and Computer Engineering, Rice Uni-
versity and 2Department of Neuroscience, Baylor College of Medicine.

Fig. 1. Recorded (top) vs. Simulated (bottom) Ripple

performance of these algorithms in simulations and also two
new algorithms: one based on an alternate method for digital
envelope estimation [11] and one using the CUSUM method
for event detection [12]. In order to specifically target the
neural activity which occurs during SWR, disruption requires
the latency of detection to be as minimal as possible. This
implies tradeoffs in the choice of thresholds, window sizes,
and other algorithmic parameters. In addition, to achieve
continuous real-time operation, the computational require-
ments of detection algorithms are limited by the processing
power of the data processing system. Section II introduces
the theoretical framework for the study, including a) the
SWR model used for simulated testing b) brief theory of
the algorithms under study and c) a description of the testing
process, Section III describes a hardware framework that has
been set-up for ripple detection, Section IV presents results,
and Section V concludes with suggestions for fast real time
implementation.

II. THEORY

A. Sharp Wave Ripple Model

A SWR event is modelled functionally as a sinusoid with
amplitude A and frequency fc (150 Hz ≤ fc ≤ 250 Hz), that
is amplitude modulated by a second sinusoid with amplitude
Am = 1 and fm = 1/2tr, where tr is the duration of a ripple
event. Gaussian (N(0, 1)) white is generated and filtered to
produce pink noise (S(f) ∝ 1/f). The standard deviation
of the noise σ is used in conjunction with a user specfied
SNR to calculate A = 10SNR/20 ∗

√
2σ. The sampling rate

2637978-1-4244-7929-0/14/$26.00 ©2014 European Union

fhs used is 30,000 Hz to match the sampling rate of current
hardware acquisition systems. The SWR is then bandpass
filtered (150 Hz - 250 Hz) and downsampled to a working
sampling rate fs = 1500 Hz. Figure 1 shows a comparison
between an example ripple recorded from a rat hippocampus
and a simulated ripple.

B. Detection Algorithms

This section examines algorithms used in past literature
as well as two new methods. In previous studies and for all
the algorithms presented below, LFP data are first bandpass
filtered to the ripple band, typically 150 Hz - 250 Hz.
Implementations for filtering have varied, but we use a 4th
order IIR Butterworth filter.

1) Sliding Power Window Thresholding (PWT): It is as-
sumed that a preliminary noise estimation has been per-
formed to obtain µ̂ and σ̂, i.e. mean and standard variation of
the background noise. This is implemented prior to start of
detection by averaging over a large number of continuously
acquired samples or, alternatively, averaging over a large
number of randomly selected segments of the signal. The
RMS averaged power in a sliding time window of duration tw
is calculated and compared to a threshold chosen as µ+Kσ,
where K is usually set in the range of 3-5. Previously, tw
has been set to values ranging from 10ms to 100ms. To
encourage low latency and reduced memory usage, it is fixed
at 4 ms in the simulation, which corresponds to the length
of a half-cycle ripple at 250 Hz.

2) Heuristic Envelope Based Thresholding (HBT): As
developed in [10], this algorithm works by calculating the
envelope of the filtered signal, while comparing it to an
iteratively updated threshold. Their algorithm is reproduced
here for convenience. The smoothened estimate of the signal
is given by:

vest (n) = vest (n− 1) + g (n− 1) (|x(n)| − vest (n− 1))
(1)

where vest is the smoothed estimate, g(n) is an adaptive
gain, and x(n) is the filtered SWR . The gain increases and
decreases accordingly as a rising or falling slope is detected:

g (n) =

{
0.2 |x(n)| < vest(n− 1)
1
20{
∑19

i=1 g(n− i) + 1.2} |x(n)| > vest(n− 1).
(2)

The mean µ̂ and standard deviation σ̂ of the noise are
calculated using an iterative update algorithm for Nsmooth =
10000 samples before commencing with detection:

µ̂ (n) =
µ (n− 1) (Nsmooth − 1) + |x(n)|

Nsmooth
(3)

σ̂ (n) =
(|x(n)| − µ (n− 1) | − σ (n− 1))

Nsmooth
+ σ (n− 1) .

(4)
A SWR is detected when the envelope estimate vest(n)
exceeds µ̂ + Kσ̂. In [10], values of K in the range of 4-
6 were used.

3) Envelope Detection Filter Thresholding (EDF): A low
latency method that requires only current and previous
sample of {x(n)} was developed in [11]. It’s performance
for feasibility for ripple detection was studied. The envelope
estimate is given by:

v(n) =

√
x(n)2 +

(
x(n− 1)

sinω0
− x(n)

tanω0

)2

(5)

where ω0 = 2πfc/fs. Instead of estimating fc online, we set
fc = 150Hz (the assumed minimum ripple frequency). Sim-
ulations showed that this does not effect the estimate of the
envelope significantly and avoids the complications involved
in also estimating the ripple frequency. This also permits
an offline calculation of ω0. Noise estimation was done as
in previous algorithms and the estimate was thresholded to
detect a ripple event.

4) CUSUM Algorithm Thresholding: The classic tech-
nique in sequential analysis [12] was adapted for ripple
detection. Low computational complexity, proven history of
use in change-point detection, and that fact that using a like-
lihood function as a parameter is popular but not necessary,
helped to motivate this choice. The usual algorithm proceeds
by assuming a binary hypothesis and calculating the log-
likelihood:

LL(n) = ln

(
p (x(n), θ1)

p (x(n), θ0)

)
. (6)

Here, the amplitude of the ripple is not known a priori. Also,
depending on the depth of the electrodes and their neighbor-
hood, the amplitudes of successive events may exhibit a high
degree of variation. In the absence of a p.d.f. that can model
the amplitude of a ripple event, a Gaussian p.d.f. that models
the null hypothesis, i.e. “no ripple present”, is used with a
constant offset to make it work with the rest of the update
steps. In the usual scheme, a decision function is updated at
every sample index as:

G(n) = {G(n− 1) + LL(n)}+ (7)

where {z}+ = sup(z, 0) and G(0) = 0. The log-likelihood
is replaced with the following term:

V (n) =

(
x(n)− µ̂

σ̂

)2

− k2 (8)

where k is a constant whose value shall be discussed
shortly. This offset is necessary because the logarithm of the
Gaussian p.d.f. is always non-negative, whereas the CUSUM
algorithm relies on the log-likelihood to be negative for
substantive periods, i.e. when there is only noise present.
Substituting this to get a modified update rule:

G(n) = {G(n− 1) + V (n)}+ . (9)

Whereas earlier G(n) starts accruing for sample indexes
where LL(n) > 0, under the modified rule it starts accruing
once V (n) > 0, i.e. when a sample is larger than k s.d. above
the estimated mean of the background noise. The decision
function is compared to a user-determined threshold, h. A

2638

simple, semi-automated method to get a minimum value of
h would be

h =

(
fs
2fc

)
(m2 − k2) (10)

which represents the value that G(n) should at least add up
to, at the end of a ripple half-cycle. The first term on the
R.H.S. equals the number of samples in a ripple half-cycle.
m represents the average signal level over a half-cycle and
k represents the signal level over which a sample is more
likely to be a ripple than noise. Here, k,m are multiples of
σ̂. In practice, fc may be set to 250Hz and m set as k + 1.
The parameter k should be set between 1-2 to ensure low
latency detection. The threshold can be calculated offline.
For testing purposes, k = 2 and m = 3 were used. The
noise parameters µ̂, σ̂ are estimated as previously.

C. Testing

Each algorithm was tested on 500 simulated “ripple
events” - here defined as 100 ms of noise followed by a
100 ms long ripple. To test for false positives half of these
cases had no actual ripple waveform. They were evaluated
for detection latency and the computational cost. Recorded
data was used for manual testing to visually confirm efficacy,
but could not be used for quantifying performance due to
absence of gold standard data. The simulations were done at
a ”normal” SNR of 8 dB and a ”low” SNR of 0 dB.

III. ONLINE IMPLEMENTATION

Open-ephys (http://open-ephys.org) is a set of
collaborative, open-sourced tools for extracellular recordings
with an emphasis on high quality multichannel data acquisi-
tion. The open-ephys acquisition board is used in conjunc-
tion with its open-source GUI to display, record and save
spike activity and LFP data. Pulse Pal (https://sites.
google.com/site/pulsepalwiki/home) is an open
source pulse stimulator designed to deliver precisely timed
control signals for neural stimulation. The open-ephys GUI
offers a module that interfaces with the Pulse Pal through
its API for seamless integration. A ripple detection module

for open-ephys can be quickly developed in C++ and added
to the open-ephys GUI. Since it is open-source, it is easy
to rapidly implement any of the above or a combination of
algorithms for use during behavioral experiments.

Figure 2 outlines the flow of data and events using the
open-ephys and Pulse Pal hardware.

IV. RESULTS

Figure 3 and 4 show a comparison of the algorithms
at. All plots have been downsampled by a factor of 4 for
clarity. All four algorithms show similar trends in variation
with the False Positive Rate(FPR). The CUSUM algorithm
is the method that yields the lowest latency overall. The
standard deviation of latency in each case suggests also
that the CUSUM algorithm is the most closely centered
around the mean, while the HBT, EDF and PWT algorithms
have increasingly greater amounts of latency variation. This
suggests that the CUSUM is a good choice an algorithm for
fast detection with a low variation in detection time. The
EDF algorithm improves upon the PWT somewhat while
the HBT displays intermediate performance. The Miss Rate
(MR) plot shows a big difference between the characteristics
of the CUSUM algorithm and the other three. In the previous
plot also it is seen that the latency mean for the CUSUM
algorithm has the highest slope near the 0 FPR point. These
two facts indicate a robustness to variation in the threshold
set. This is an important property since threshold setting
is a choice that is usually made with limited information
and a certain amount of trial-and-error. Similar behavior is
observed in the low SNR (0 dB) case. In the case of a noisy
electrode, one may expect the 0 FPR latency to increase by
20 ms. Computational overheads of each algorithm have been
tabulated in Table I.

V. CONCLUSIONS

The CUSUM algorithm is found to be the most robust
method among the techniques investigated. There is however,
an absence of a rigorous theoretical method for choosing a
threshold. The HBT algorithm has been previously used for

Fig. 2. Flow diagram for ripple detection

2639

TABLE I
COMPUTATIONAL COST

Algorithm Samples in Memory Multiply/Add ops. (per
time index)

PWT tw ∗ fs 1/2
HBT 20 2/4
EDF 2 4/2
CUSUM 1 2/2

Fig. 3. Ripple detection latency vs. false positive rate/miss rate (8dB)

ripple interruption and it is superior to power window meth-
ods although it also relies upon a semi-automated method for
choosing the threshold. The EDF algorithm is a very simple,
efficient technique that offers reasonable improvement over,
or at worst, comparable performance to, the PWT algorithm.

REFERENCES

[1] G. Buzski, L. Lai-Wo S., and C. H. Vanderwolf, Cellular bases of
hippocampal EEG in the behaving rat, Brain Res. Rev., vol. 6, no.
2, pp. 139171, Oct. 1983.

[2] G. Buzsaki, Z. Horvath, R. Urioste, J. Hetke, and K. Wise, High-
frequency network oscillation in the hippocampus, Sci. , vol. 256 ,
no. 5059 , pp. 10251027, May 1992.

[3] J. Csicsvari, H. Hirase, A. Mamiya, and G. Buzski, Ensemble Patterns
of Hippocampal CA3-CA1 Neurons during Sharp WaveAssociated
Population Events, Neuron, vol. 28, no. 2, pp. 585594, Nov. 2000.

[4] J. J. Chrobak and G. Buzski, High-Frequency Oscillations in the Output
Networks of the HippocampalEntorhinal Axis of the Freely Behaving
Rat, J. Neurosci. , vol. 16 , no. 9 , pp. 30563066, May 1996.

[5] G. Buzski, Two-stage model of memory trace formation: A role for
noisy brain states, Neuroscience, vol. 31, no. 3, pp. 551570, Jan. 1989.

[6] M. A. Wilson and B. L. McNaughton, Reactivation of hippocampal
ensemble memories during sleep, Sci. , vol. 265 , no. 5172 , pp. 676679,
Jul. 1994.

[7] G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzski, and M. B.
Zugaro, Selective suppression of hippocampal ripples impairs spatial
memory., Nat. Neurosci., vol. 12, no. 10, pp. 12223, Oct. 2009.

[8] V. Ego-Stengel and M. A. Wilson, Disruption of ripple-associated
hippocampal activity during rest impairs spatial learning in the rat,
Hippocampus, vol. 20, no. 1, pp. 110, Jan. 2010.

[9] M. S. Nokia, M. Penttonen, and J. Wikgren, Hippocampal ripple-
contingent training accelerates trace eyeblink conditioning and retards
extinction in rabbits., J. Neurosci., vol. 30, no. 34, pp. 1148692, Aug.
2010.

[10] S. P. Jadhav, C. Kemere, P. W. German, and L. M. Frank, Awake
Hippocampal Sharp-Wave Ripples Support Spatial Memory, Sci. , vol.
336 , no. 6087 , pp. 14541458, Jun. 2012.

[11] C. Fritsch and A. Iba, Filter for Real-Time Operation, IEEE Trans.
Instrum. Meas., vol. 48, no. 6, pp. 12871293, 1999.

Fig. 4. Ripple detection latency vs. false positive rate/miss rate (0dB)

[12] P. Granjon, The CUSUM algorithm a small review, class notes for
“Decision and Change Detection”, Grenoble Institute of Technology,
Jun. 2012.

2640

